通过无线信道传播的信号沿着大量不同的路径到达目的地,这些不同路径称为多径。图 1 是一位沿公路驾车的典型移动用户的图形。该图描述了从发射机到接收机的众多信号路径中的三条。这些路径源自环境中物体对辐射能的散射、反射和衍射或者媒介中的折射。各种传播机制对路径损耗和衰落模型产生不同的影响。
接收信号的功率会因为三种效应而发生变化: 平均传播 (路径) 损耗、宏观 (大型或 "缓慢") 衰落和微观 (小型或 "快速") 衰落,如图 2 中所示。平均传播损耗与距离有关,由水、植物的吸收以及地面的反射效应产生。宏观衰落是由于建筑物和自然地物的阴影效应所产生的。微观衰落是由于多径的相长、相消组合所产生,由于微观衰落的幅度波动快于宏观衰落的幅度波动,所以也将其称为快衰落。
无线传播特性
平均传播损耗
信号强度的总平均损耗是距离的函数,它遵循 1/d n 律,其中 d 是发射机和接收机之间的距离,n 是取值范围为 2 至 6 的斜度指标,其具体取值与环境有关。例如,在自由空间, n = 2,斜度为 20 dB/10 倍程。在陆地环境中,典型值为 n = 4,导致 40 dB/10 倍程信号衰落,它是距离的函数。在这一陆地设置中,将距离从 100 英尺更改为 1000 英尺 (一个 10 倍程) 将导致信号功率平均衰减 40 dB。
宏观 (慢) 衰落
宏观衰落 (慢衰落) 是由于建筑物和自然地物的阴影效应所导致,接收信号在大约 20 倍波长距离内的局部平均值可以确定此衰落值。宏观衰落分布受天线高度、工作频率和特定类型环境的影响。慢衰落偏离平均传播损耗值的偏差值被看作一个随机变量,如果以分贝 (dB) 表示,其接近正态分布,可以认为它是一种对数正态分布,其概率密度函数(PDF) 如下所示。
在上式中,x (单位为 dB) 是一个随机变量,表示信号功率电平的大幅波动。变量 µ 和 σ 分别是 x 的均值和标准差。µ 和 σ 均用 dB 表示。均值 µ 等于前节中所讨论的平均传播损耗。对于城市环境,标准差 σ 的取值可高达 8 dB。
微观 (快) 衰落
微观衰落 (快衰落) 是因为从周围环境接收的大量多径信号相长、相消干扰而造成的。当距离变化大约二分之一波长时,接收信号的强度可能会发生快速变化,所以将这一特性命名为 "快" 衰落。如果要在大约 20 波长的较短距离上研究接收功率的衰落特性,则可以将叠加信号的同相 (I) 分量和正交 (Q) 分量模型设定为独立的零均值高斯过程。这一模型假定散射分量的数目很大,而且相互独立。因此,接收信号的电压振幅包络为瑞利分布,其 PDF 给出如下
其中,x 是一个随机变量,这里取作接收电压的振幅,σ 是标准差。对于静态用户,由于该用户邻近区域中的散射体存在相对运动,所以也存在类似的响应,它是时间的函数。峰值与零陷之间的功率电平相对变化通常为 15-20 dB,但在某些信道条件下可能高达 50 dB。
如果发射机和接收机之间存在直接路径,那么信号包络不再是瑞利分布,信号幅度的统计特性将服从莱斯分布。莱斯衰落由瑞利分布信号与直接或者视线 (LOS) 信号之和形成。莱斯衰落环境具有一条很强的直接路径,它到达接收机的时间时延与来自本地散射体的多径到达时延大致相同。莱斯分布的电压幅度包络具有如下 PDF
其中,x 是一个随机变量,这里取作所接收的电压幅度,σ 是标准差。I 0 ( ) 项是第 一类零阶修正贝塞尔函数。由于 I 0 ( ) = 1,所以当 K = 0 时,莱斯分布简化为瑞利分布。莱斯分布由这个 K 因子定义,对于无线环境来说,K 因子定义为 LOS 分量与散射分量的功率比。
MIMO技术回顾
许多无线系统如 IEEE 802.11n WLAN、基于 IEEE 802.16e 的 Mobile WiMAXTM Wave 2 和长期演进 (LTE) 等移动无线系统近来已经采用了 MIMO技术和多天线技术。MIMO技术通过提高频谱效率实现了更高数据速率的承诺。
MIMO 具有增强信号鲁棒性和提高容量的潜力,但是 MIMO器件与系统的开发和测试需要一些高级信道仿真工具。
本文首先回顾 MIMO技术和无线信道的基本特性,然后介绍空间相关概念及其对 MIMO性能的影响。还包括对 MIMO信道空间特性建模的示范,并描述如何使用商用仪表 (例如信号源) 对这些复杂信道进行仿真。
SIMO(Single-Input Multiple-Output)单输入多输出
单发多收:虽然有2路信号,但是这2路信号是从同一个发射天线发出的,所以发送的数据是相同的,传输的仍然只有1路信号。这样,当某一路信号有部分丢失也没关系,只要终端能从另一路信号中收到完整数据即可。虽然最 大容量还是1条路径,但是可靠性却提高了1倍。这种方式叫作接收分集。
MISO(Multiple-Input Single-Output)多输入单输出
因为接收天线只有1个,所以这两路最终还是要合成1路,这就导致发射天线只能发送相同的数据,传输的还是只有1路信号。这样做其实可以达到和SIMO相同的效果,这种传输系统叫作多输入单输出,即MISO。这种方式也叫发射分集。
什么是MIMO技术?
那么什么是MIMO技术呢?通俗的说就是为了提升无线信号的传输质量,而利用多个天线将无线信号进行同步收发的无线技术。能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并恢复原信息。
MIMO技术采用空间复用技术对无线信号进行处理后,数据通过多重切割之后转换成多个平行的数据子流,数据子流经过多副天线同步传输,在空中产生独立的并行信道传送这些信号流;为了避免被切割的信号不一致,在接收端也采用多个天线同时接收,根据时间差的因素将分开的各信号重新组合,还原出原本的数据。
MIMO技术的优点
MIMO技术的优点是通过增大天线的数量来传输信息子流,将多个数据子流同时发送到信道上,各发射信号占用同一频带,从而在不增加频带宽度的情况下增加频谱利用率。使用MIMO技术后,可以令无线信号的传输距离、天线的接受范围进一步扩大,信号抗干扰性更强,无线传输更为精准快速。
MIMO与传统的单天线系统相比多个发射和接收天线为无线系统的设计者打开了一个新的维度--空间自由度。信号在多对收发天线间经历不同的信道衰落,如果这些衰落的统计特性互相独立,就相当于在通信系统中引入了多个传输通道。这和增加系统传输带宽几乎可以达到同样的效果。
垂直方向的波束赋形可以使波形具有更强的方向性,垂直方向上的波束分离使基站可以同时服务多个终端且保证终端之间的干扰为最小
按照天线的空间分配可以分为空分复用(Spatial multiplexing)和空间分集(Spatial diversity)
空分复用(Spatial multiplexing)通过在不同天线上传输不同的数据流来提高系统的吞吐。空间分集(Spatial diversity)通过利用多根天线带来的信道多样性,在不增加发射功率的前下提高接收信噪比降低误码率。
按照数据流到天线端口,天线单元的映射方式可以分为:预编码(precoding)和波束赋形(beamforming),预编码也常被称作数字波束赋形(digital beamforming)。
尽管预编码和波束赋型是分别在数字域和模拟域的操作,但两种技术的本质都是试图改变信道的指向,使能量聚集到信号需要进行传输的方向。
公众号 扫码咨询
![]() |
上海市闵行区中春路4999号莘庄商务楼1326室 |
![]() |
service@covond.com |
![]() |
www.covond.com |
![]() |
交换机:18017588179(孙经理) 无人机:13311882358(孙总) |